Prion Protein and Stage Specific Embryo Antigen 1 as Selection Markers to Enrich the Fraction of Murine Embryonic Stem Cell-Derived Cardiomyocytes

نویسندگان

  • Nobuhito Ikeda
  • Yuji Nakayama
  • Natsumi Nakazawa
  • Akio Yoshida
  • Haruaki Ninomiya
  • Yasuaki Shirayoshi
چکیده

BACKGROUND The prion protein (PrP) might be useful as a tool to collect cardiac progenitor cells derived from embryonic stem (ES) cells. It is also possible that PrP(+) cells include undifferentiated cells with a capacity to develop into tumors. METHODS PrP(+) cells isolated from embryoid bodies (EB) formed by mouse AB1 ES cells were examined using RT-PCR analysis and clonogeneic cell assay. To assess their potential to differentiate into cardiomyocytes, Nkx2.5(GFP/+) (hcgp7) cells, another ES cell line that carries the GFP reporter gene in the Nkx2.5 loci, were used. RESULTS PrP(+) cells isolated from EB of day 7 and 14 did not express pluripotency markers, but expressed cardiac cell markers, while PrP(+) cells isolated from EB of day 21 expressed pluripotency markers. Cultured PrP(+) cells isolated from EB of day 21 expressed pluripotency markers to form colonies, whereas those isolated from EB of day 7 and 14 did not. To exclude proliferating cells from PrP(+) cells, stage specific embryo antigen 1 (SSEA1) was employed as a second marker. PrP(+)/SSEA1(-) cells did not proliferate and expressed cardiac cell markers, while PrP(+)/SSEA1(+) did proliferate. CONCLUSION PrP(+) cells isolated from EB included undifferentiated cells in day 21. PrP(+)/SSEA1(-) cells included cardiomyoctes, suggesting PrP and SSEA1 may be useful as markers to enrich the fraction of cardiomyocytes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CFU-GM Like Colonies Derived from Embryonic Stem Cells Cultured on the Bone Marrow Stromal Cells

The aim of this study was to isolate mouse embryonic stem cells from late blastocyst stage embryos and to use them as a model system for the study of hematopoietic induction outside the embryo by coculturing of embryonic stem cells with bone marrow stromal cells. Blastocyst stage embryos from pregnant NMRI mice were obtained and cultured for 1-2 days in DMEM medium. The inner cell masses formed...

متن کامل

Genetically Engineered Mouse Embryonic Stem Cell – derived Cardiomyocytes as a Suitable Model on Drugs Toxicity In vitro

Background DOX is a powerful chemotherapeutic agent used in the treatment of solid tumors and malignant hematological diseases. However, its cardiac toxicity limits the clinical usefulness of this drug. Previous reports have shown Corticosteroids induce a cytoprotective effect on cardiomyocytes. Mouse transgenic embryonic stem cell-derived pure cardiomyocytes may be considered as a model for a...

متن کامل

The Effect of Cardio Gel and Matrigel on the Ultrastructure of Cardiomyocytes Derived From Mouse Embryonic Stem Cells

Purpose: To investigate the effect of cardiogel and matrigel on the ultrastructure of embryonic stem cell-derived cardiomyocytes. ECM: Extracellular Matrix derived from cardiac fibroblasts (cardiogel), commercial extracellular matrix (matrigel) and control group (without ECM) were cultured for up to 21 days. Ultrastructural properties of cardiomyocytes were evaluated by transmitting electron mi...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2016